Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates.

نویسندگان

  • Stefano Pluchino
  • Angela Gritti
  • Erwin Blezer
  • Stefano Amadio
  • Elena Brambilla
  • Giovanna Borsellino
  • Chiara Cossetti
  • Ubaldo Del Carro
  • Giancarlo Comi
  • Bert 't Hart
  • Angelo Vescovi
  • Gianvito Martino
چکیده

OBJECTIVE Transplanted neural stem/precursor cells (NPCs) display peculiar therapeutic plasticity in vivo. Although the replacement of cells was first expected as the prime therapeutic mechanism of stem cells in regenerative medicine, it is now clear that transplanted NPCs simultaneously instruct several therapeutic mechanisms, among which replacement of cells might not necessarily prevail. A comprehensive understanding of the mechanism(s) by which NPCs exert their therapeutic plasticity is lacking. This study was designed as a preclinical approach to test the feasibility of human NPC transplantation in an outbreed nonhuman primate experimental autoimmune encephalomyelitis (EAE) model approximating the clinical and complex neuropathological situation of human multiple sclerosis (MS) more closely than EAE in the standard laboratory rodent. METHODS We examined the safety and efficacy of the intravenous (IV) and intrathecal (IT) administration of human NPCs in common marmosets affected by human myelin oligodendrocyte glycoprotein 1-125-induced EAE. Treatment commenced upon the occurrence of detectable brain lesions on a 4.7T spectrometer. RESULTS EAE marmosets injected IV or IT with NPCs accumulated lower disability and displayed increased survival, as compared with sham-treated controls. Transplanted NPCs persisted within the host central nervous system (CNS), but were also found in draining lymph nodes, for up to 3 months after transplantation and exhibited remarkable immune regulatory capacity in vitro. INTERPRETATION Herein, we provide the first evidence that human CNS stem cells ameliorate EAE in nonhuman primates without overt side effects. Immune regulation (rather than neural differentiation) is suggested as the major putative mechanism by which NPCs ameliorate EAE in vivo. Our findings represent a critical step toward the clinical use of human NPCs in MS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells

Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...

متن کامل

O 9: Immunomodulatory Effects of Neural Stem Cell on Multiple Sclerosis: A Systematic Review

Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic inflammatory demyelinating disorders of central nervous system (CNS). While the cause is unclear, the fundamental mechanism is thought to be destruction of myelin sheaths of neurons through immune system. One of the approaches being proposed in EAE therapy is neural stem cells (NSCs) trans...

متن کامل

P 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury

Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...

متن کامل

Remodelling the injured CNS through the establishment of atypical ectopic perivascular neural stem cell niches.

Compelling evidence exists that somatic neural stem/precursor cell (NPC)-based therapies protect the central nervous system (CNS) from chronic inflammation-driven degeneration, such as that occurring in experimental autoimmune encephalomyelitis (EAE), multiple sclerosis (MS), cerebral ischemic/hemorrhagic stroke and spinal cord injury (SCI). However, while it was first assumed that NPC transpla...

متن کامل

Immunomodulatory Effect of Mesenchymal Stem Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: A Review Study

Multiple Sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system that may lead to disability of the patient. Current MS treatment regimens are still insufficient and research is conducted for developing more effective therapies capable of targeting neurodegeneration, inflammation, and demyelination. Recent results of experimental and clinical studies in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annals of neurology

دوره 66 3  شماره 

صفحات  -

تاریخ انتشار 2009